Project Friday 1.1: Artificial Intelligence meets coffee

This Friday we started with our first ‘Project Friday’. About once a month, on a Friday, we’ll lock ourselves away for the afternoon with a couple of beers and a fun project. The project doesn’t need to bring money to table, it needs to bring fun, challenges, knowledge and inspiration to the table.

Our first project is definitely an awesome one; Artificial Intelligence meets Coffee! Douwe Egberts was kind enough to provide us with a full automatic coffee machine, well almost full automatic, you still need to push the button to let the machine know whether you want a normal coffee, a cappuccino, an espresso or whatever grinds your gears. Our objective: create an actual full automatic coffee machine. The goal is to add face recognition to the coffee machine: Stand in front of the machine, the machine recognizes who you are and knows which coffee you want.

We started by prepping a Raspberry Pi and installing OpenCV. Dismantling the machine and figuring out how circuit board works using the well proven method of trial and error. Since we’re not engineers, the biggest challenge is probably going to be to hack the coffee machine: within 15 minutes, one colleague managed to short circuit the Arduino board. Great start!




PF 1.0


Read more about what happened next


Python & R vs. SPSS & SAS

When we’re working for clients we mostly come across the statistical programming languages SAS, SPSS, R and Python. Of these SAS and SPSS are probably the most used. However, the interest for the open source languages R and Python is increasing. In recent years, some of our clients migrated from using SAS or SPSS to using R and/or Python. And even if they haven’t (yet), most commercial software packages (including SAS and SPSS) make it possible to connect to R and Python nowadays.

SAS was developed at the North Carolina State University and was primarily developed to be able to analyse large quantities of agriculture data. The abbreviation SAS stands for Statistical Analysis System. In 1976 the company SAS was founded as the demand for such software increased. Statistical Package for the Social Sciences (SPSS) was developed for the social sciences and was the first statistical programming language for the PC. It was developed in 1968 at the Stanford University and eight years later the company SPSS Inc. was founded, which was bought by IBM in 2009.

In 2000 the University of Auckland released the first version of R, a programming language primarily focused on statistical modeling and was open sourced under the GNU license. Python is the only one that was not developed at a university. Python was created by a Dutch guy who is a big fan of Monty Python (where the name comes from). He needed a project during Christmas and created this language which is based on ABC. ABC is a language, also created by him, with the goal to teach non-programmers how to program. Python is a multi-purpose language, like C++ and Java, with the big difference and advantage that Python is way easier to learn. Programmers carried on and created lots of modules on top of Python and it therefore has a wide range of statistical modeling capabilities nowadays. That’s why Python definitely belongs in this list.

In this article, we compare the four languages on methods and techniques, ease of learning, visualisation, support and costs. We explicitly focus on the languages, the user interfaces SAS Enterprise Miner and SPSS Modeler are out of scope.


Statistical methods and Techniques

My vision on Data Analysis is that there is continuum between explanatory models on one side and predictive models on the other side. The decisions you make during the modeling process depend on your goal. Let’s take Customer Churn as an example, you can ask yourself why are customers leaving? Or you can ask yourself which customers are leaving? The first question has as its primary goal to explain churn, while the second question has as its primary goal to predict churn. These are two fundamentally different questions and this has implications for the decisions you take along the way. The predictive side of Data Analysis is closely related to terms like Data Mining and Machine Learning.

When we’re looking at SPSS and SAS, both of these languages originate from the explanatory side of Data Analysis. They are developed in an academic environment, where hypotheses testing plays a major role. This makes that they have significant less methods and techniques in comparison to R and Python. Nowadays, SAS and SPSS both have data mining tools (SAS Enterprise Miner and SPSS Modeler), however these are different tools and you’ll need extra licenses.

One of the major advantages of open source tooling is that the community continuously improves and increases functionality. R was created by academics, who wanted their algorithms to spread as easily as possible. Ergo R has the widest range of algorithms, which makes R strong on the explanatory side and on the predictive side of Data Analysis.

Python is developed with a strong focus on (business) applications, not from an academic or statistical standpoint. This makes Python very powerful when algorithms are directly used in applications. Hence, we see that the statistical capabilities are primarily focused on the predictive side. Python is mostly used in Data Mining or Machine Learning applications where a data analyst doesn’t need to intervene. Python is therefore also strong in analysing images and videos, for example we’ve used Python this summer to build our own autonomous driving RC car. Python is also the easiest language to use when using Big Data Frameworks like Spark.

Ease of learning

Both SPSS and SAS have a comprehensive user interface, with the consequence that a user doesn’t necessarily need to code. Furthermore, SPSS has a paste-function which creates syntaxes from steps executed in the user interface and SAS has Proc SQL, which makes SAS-coding a lot easier for people who know the SQL query language. SAS and SPSS code are syntaxtically far from similar to each other and also very different from other relevant programming languages, so when you need to learn one of these from scratch, good luck with it!

Although there are GUI alternatives for R, like Rattle, it doesn’t come close to SAS or SPSS in terms of its functionality. R is easily to learn for programmers, however, a lot of analysts don’t have a background in programming. R has the steepest learning curve from all, it’s the most difficult one to start with. But once you get the basics, it gets easier soon. For this specific reason, we’ve created a R course, called Experience R, which kickstarts (aspiring) data analysts / scientists in learning R. Python is based on ABC, which is developed with the sole purpose of teaching non-programmers how to program. Readability is one of the key features of Python. This makes Python the easiest language to learn. As Python is so broad, there are no GUI’s for Python.

To conclude, as for ease of learning SPSS and SAS are the best option for starting analysts as they provide tools where the user doesn’t need to program.


Both SAS and SPSS are commercial products and therefore have official support. This motivates some companies to choose for these languages: if something goes wrong, they’ve got support.

There is a misconception around the support for open-source tooling. It’s true that there is no official support from the creators or owners, nonetheless, there’s a large community for both languages most willing to help you to solve your problem. And 99 out of 100 times (if not more often), your question has already been asked and answered on sites like Stack Overflow. On top of that, there are numerous companies that do provide professional support for R and Python. So, although there’s no official support for both R and Python, in practice we see that if you’ve got a question, you’ll likely have your answer sooner if it’s about R or Python than in case it’s SAS or SPSS related.


The graphical capabilities of SAS and SPSS are purely functional; although it is possible to make minor changes to graphs, to fully customize your plots and visualizations in SAS and SPSS can be very cumbersome or even impossible. R and Python offer much more opportunities to customize and optimize your graphs due to the wide range of modules that are available. The most widely used module for R is ggplot2, which has a wide set of graphs where you’re able to adjust practically everything. These graphs are also easily made interactive, which allows users to play with the data through applications like shiny.

Python and R learned (and still learn) a lot from each other. One of the best examples of this is that Python also has a ggplot-module , which has practically the same functionality and syntax as it does in R. Another widely used module for visualisation in Python is Matplotlib.


R and Python are open source, which makes them freely available for everybody. The downside is that, as we’ve discussed before, these are harder to learn languages compared to start using the SAS or SPSS GUI. As a result, analysts equipped with R and/or Python in their skillset have higher salaries than analyst that don’t. Educating employees that are currently not familiar with R and/or Python costs money as well. Therefore, in practice it isn’t the case that the open source programming language are completely free of costs, but when you compare it with the license fees for SAS or SPSS, the business case is very easily made: R and Python are way cheaper!

My choice

“Software is like sex, it’s better when it’s free” – Linus Torvalds (creator Linux)

My go-to tools are R and Python, I can use these languages everywhere without having to buy licenses. Also I don’t need to wait for the licenses. And time is a key feature in my job as a consultant. Aside from licenses, probably the main reason is the wide range of statistical methods; I can use any algorithm out there and choose the one that suits the challenge at hand best.

Which of the two languages I use depends on the goal, as mentioned above. Python is a multi-purpose language and is developed with a strong focus on applications. Python is therefore strong in Machine Learning applications; hence I use Python for example for Face or Object Recognition or Deep Learning applications. I use R for goals which have to do with customer behaviour, where the explanatory side also plays a major role; if I know which customers are about to churn, I would also like to know why.

These two languages are for a large part complementary. There are libraries for R that allow you to run Python code (reticulate, rPython), and there are Python modules which allow you to run R code (rpy2). This makes the combination of the two languages even stronger.

Jeroen Kromme, Senior Consultant Data Scientist



De stemmen zijn geteld…

Ondanks de hoge extra werkdruk voor de stemmentellers en de daaruit voortvloeiende vertraging van de definitieve uitslag is het ons als hackathon stemmentellers toch al gelukt om een winnaar uit de bus te laten komen.

Het is een epische strijd geworden, zowel op het strijdtoneel van de Tweede Kamer Verkiezingen als op het Hackathon strijdtoneel. Waar het op het eerste toneel vooral draait om standpunten, geloofwaardigheid en uitstraling, draait het op het tweede toneel maar om één ding: harde feiten!


Asscher en de MARUG hadden hoog ingezet op de PvdA, dit is helaas niet uitgekomen, met een historisch dieptepunt voor de PvdA en helaas geen winst voor de MARUG als gevolg. Dankzij Erdogan maakte Rutte in de laatste paar dagen voor de verkiezingen nog een mooie eindspurt, met wel verlies van zetels, maar vergeleken met de peilingen en veel van de hackathon voorspellingen was het toch een mooie dag voor de VVD! Wilders bleek, ondanks al zijn pogingen om dit niet te zijn, toch heel voorspelbaar. De voorspellingen vanuit de hackathon lagen allemaal zeer dicht bij het aantal behaalde zetels van de PVV.


Maar om dan nu over te gaan tot het nieuws waar iedereen op wacht…

De grote strijd op het hackathon toneel is gegaan tussen Essent en de ANWB, waarbij wij kunnen aankondigen dat de ANWB zich de VVD van deze verkiezingen mag voelen en dus als winnaar uit de bus is gekomen!


Gefeliciteerd ANWB!


Namens The Analytics Lab en Cmotions willen wij, als hackathon crew, de deelnemers van harte bedanken voor hun humoristische en toch serieuze en sportieve inzet bij de hackathon. Wij vonden het zelf weer een ontzettend leuk evenement om te organiseren en hopen alle deelnemers bij de volgende hackathon weer te mogen begroeten!



Happy pi day!

Just something funny because it’s  pi day. Enjoy!

# clear your environment
rm(list = ls())
# load the necessary libraries
# lab kleuren
oranje <- rgb(228/255, 86/255, 65/255)
donkergrijs <- rgb(75/255, 75/255, 74/255)
lichtblauw <- rgb(123/255, 176/255, 231/255)
# read the image of pi
img = readPNG("C:/Users/j.schoonemann/Desktop/pi.png")
# read the logo of The Analytics Lab
logo = readPNG("C:/Users/j.schoonemann/Desktop/Lab.png")
# define the x-position of the pie charts
x_position <- c(2, 4, 8, 14, 22)
# define the y-position of the pie charts
y_position <- c(4, 6, 8, 10, 12)
# define the size of the pie charts
pie_size <- c(0.5,1.0,1.5,2.0,2.5)
# create PacMan pie-charts
pacman <- list(c(20,80), c(20,80), c(20,80), c(20,80), c(20,80))
# calculate the chart limits for the x-axis
x_axis <- c(min(x_position - pie_size), max(x_position + pie_size))
# calculate the chart limits for the y-axis
y_axis <- c(min(y_position - pie_size),max(y_position + pie_size))
# define the colors of the PacMan pie-charts 
sector_col<- c("black", "yellow")
# define the startposition of the first slice of the pie in the charts
start_position <- c(-0.1, -0.2, -0.3, -0.4, -0.5)
# create the canvas for the plot
plot(0, xlim = x_axis, ylim = y_axis, type = "n", axes = F, xlab = "", ylab = "")
# add a title and subtitle to the plot, adjust size and color
title(main = "Eating Pi makes PacMan grow!\nHappy pi(e) day!", col.main = lichtblauw, cex.main = 2, 
 sub = "Powered by: The Analytics Lab", col.sub = oranje, cex.sub = 1)
# plot all the PacMan pie-charts
for(bubble in 1:length(x_position)){ 
 floating.pie(xpos = x_position[bubble], ypos = y_position[bubble], x = pacman[[bubble]], radius = pie_size[bubble], col = sector_col, startpos = start_position[bubble]) 
# add the logo of The Analytics Lab to the plot
rasterImage(image = logo, xleft = 0, ybottom = 12, xright = 5, ytop = 16)
# add pi multiple times to the plot
# pi between 1st and 2nd
rasterImage(image = img, xleft = 2.5, ybottom = 4.5, xright = 3.5, ytop = 5)
# pi between 2nd and 3d
rasterImage(image = img, xleft = 5, ybottom = 6.5, xright = 6, ytop = 7)
rasterImage(image = img, xleft = 5.8, ybottom = 7, xright = 6.8, ytop = 7.5)
# pi between 3d and 4th
rasterImage(image = img, xleft = 10, ybottom = 8.5, xright = 11, ytop = 9)
rasterImage(image = img, xleft = 11, ybottom = 9, xright = 12, ytop = 9.5)
# pi between 4th and 5th
rasterImage(image = img, xleft = 16.2, ybottom = 10, xright = 17.2, ytop = 10.5)
rasterImage(image = img, xleft = 17, ybottom = 10.5, xright = 18, ytop = 11)
rasterImage(image = img, xleft = 18, ybottom = 11, xright = 19, ytop = 11.5)



Voorspelling Verkiezingen

Verkiezingen Hackathon groot succes

Verschillende media meldden afgelopen week dat 75 procent van alle stemgerechtigden nog twijfelt tussen twee of meerdere partijen voor de Tweede Kamerverkiezingen van aanstaande woensdag. In die wetenschap togen de ruim 60 deelnemers aan de Verkiezingen Hackathon, georganiseerd door The Analytics Lab en Cmotions, afgelopen vrijdag naar Utrecht om deel te nemen aan de tweede editie van dit evenement. Elf teams, uit onder meer de financiële sector, energie-, automotive- en verzekeringsbranche, trachtten – ondanks de nog grote twijfels onder het electoraat – de zetelverdeling van de aanstaande verkiezingen zo goed mogelijk te voorspellen.



Om 14:00 uur werd het startschot gegeven door de organisatie, die zichzelf voor de gelegenheid hadden omgedoopt tot voorzitters van onder meer de Partij van de Analyses (PvdA), Volume and Value of Data (VVD), Correcte en Degelijke Analyses (CDA) en de Statistisch Georganiseerde Partij (SGP). De Partij Voor de Vrijheidsgraden (PVV) liet verrassend genoeg verstek gaan tijdens het debat. Nadat de stemlokalen waren geopend analyseerden en modelleerden de fanatieke deelnemers er lustig op los. Hierbij werd gebruik gemaakt van gerenommeerde technieken, waaronder Random forest modellen en neurale netwerken, maar ook de creatieve geesten konden hun energie ruimschoots kwijt. Zo baseerde een van de teams haar voorspellingen op Kamergotchi-data en viel het team van RDC terug op hun kennis van de Nederlandse automarkt door middel van de ‘Krol-correctie’: het verschijnsel dat ouderen steeds hippere auto’s kopen en zich daarmee distantiëren van het 50-plus-label dat hen door de lijsttrekker van de ouderenpartij wordt toebedeeld. Ook de samenhang tussen het aantal verkopen van rode auto’s en de zetels voor de SP in de zogenaamde ‘SP-coëfficient’, kwam uit de koker van het RDC.



Vanaf 17:30 druppelden de uitslagen uit de verschillende delen van het land bij de organisatie binnen en werden de stemmen geteld. Nadat ook de MARUG (Marketing Associatie Rijksuniversiteit Groningen) – zoals het echte studenten betaamt – keurig één minuut voor de deadline hun voorspellingen instuurde, maakten de teamcaptains zich op voor het grote lijsttrekkersdebat. Hierin werd de deelnemers gevraagd naar hun gebruikte tactieken en modelleringstechnieken. Ondanks de grote variëteit in gebruikte bronnen en analysemethoden, waren de deelnemers redelijk eensgezind in de zetelverdeling, met een maximale spreiding van zeven zetels voor de verschillende politieke partijen. Grootste uitschieter was het aantal voorspelde zetels voor de PvdA door team van de MARUG. Ondanks dat deze partij tegen het herstel van de basisbeurs voor studenten is, werd de PvdA door de studenten liefst 29 stoelen in de Tweede Kamer toebedeeld.



Als aanstaande woensdag de verkiezingsuitslag bekend is, wordt aan de hand van ‘Root Mean Square Error’ methode bepaalt welk team zich de winnaar van de tweede editie van The Analytics Lab Hackathon mag noemen en de felbegeerde voorzittershamer in ontvangst mag noemen.

Voorspelling Verkiezingen


10 artikelen over data en verkiezingen

Nu de deelnemers van onze hackathon in de startblokken staan om morgen de meest fantastische voorspellingen van de verkiezingen te maken, willen wij ze nog even inspireren met een paar mooie artikelen/websites over data en verkiezingen.

Succes morgen allemaal!

  1. Nieuwe peiling methode in Nederland
  1. Aantal peilingen samengebracht
  1. Waarom er bijna geen verandering is in de peilingen
  1. Waarom zagen de peilingen de overwinning van Trump niet aankomen
  1. Hoe Trump data analyse inzette om de verkiezingen te winnen
  1. Hoe Nederlandse politieke partijen data analyse inzetten om stemmen te winnen
  1. Google populariteit van partijen en lijsttrekkers
  1. Goede voorspeller van verkiezingen in Science
  1. Belang social media in verkiezingen
  1. Rol facebook in verkiezingen NL

Doe mee met The Analytics Lab Verkiezingen Hackathon!

Twee weken voor de Tweede Kamerverkiezingen in 2012 stond de SP in de peilingen op 35 zetels, de partij behaalde uiteindelijk met 15 zetels nog niet de helft van het door voorspelde aantal stoeltjes op het Binnenhof. De PvdA daarentegen, klom in de laatste weken uit het dal: waar 18 zetels verwacht werden, belandde Diederik Samsom met een 38-koppen tellende fractie in de Tweede Kamer en werd daarmee, achter de VVD, de tweede partij van Nederland.

(Dat de Brexit er daadwerkelijk zou komen, werd door niemand voorspeld. Donald Trump had aan de vooravond van de Amerikaanse verkiezingen volgens de experts 15% kans om te winnen, de rest is geschiedenis…)

Wat zijn de drijvende krachten achter en voorspellende waarden van de opiniepeilers? Mogen we wel over peilers spreken, of bepalen de peilingen de publieke opinie dusdanig dat we kunnen spreken van opiniemakers?

In een maatschappij waarin nog maar 30% van de kiezers trouw is aan één partij en het populistische gedachtegoed aan zowel de linker- als rechterkant van het politieke spectrum hoogtij viert, wordt het steeds moeilijker om de denkwijze van het electoraat in het stemhokje te voorspellen.

Desondanks gaan wij de uitdaging aan. In deze hackathon, georganiseerd door The Analytics Lab en Cmotions, staan de Tweede Kamerverkiezingen centraal. Wie wordt de opvolger van Emesa, die de eerste editie van dit fantastische evenement op haar naam wist te schrijven!?

Wegens het grote aantal aanmeldingen is het helaas niet meer mogelijk om je nog aan te melden voor de hackathon. Maar houd onze website en nieuwsbrief in de gaten, want er komt zeker nog een volgende waar we je graag zouden verwelkomen!


Voor meer informatie mail naar


Leer R met de Experience R. Schrijf je nu in!

Als (data) analist ben je altijd bezig met hoe jij jouw organisatie kan helpen met betere inzichten en modellen. Jouw innovativiteit wordt beperkt door de mogelijkheden die je hebt in de tool waarmee je werkt. Wij willen je graag helpen en je introduceren in R, een flexibel open-source programma waarbij de community ervoor zorgt dat state-of-the-art technieken al ingezet kunnen worden voordat jij het maar hebt kunnen bedenken.

Wil jij je graag verder ontwikkelen en innovatief bezig zijn in het Data Science vakgebied; schrijf je dan nu in voor onze Experience R!

De Experience R bestaat uit een zestal modules van vier uur. De eerste module geeft een introductie in R en Rstudio, vervolgens leer je hoe je data moet importeren vanuit verschillende bronnen, hoe je data kan manipuleren en transformeren, moet prepareren voor modelbouw en uiteindelijk het modelleren zelf. De visie van de laatste dag is ‘Putting it all together’, waarbij je het ‘R Template’ krijgt. Dit is een standaard script in R met als doel om met minimale aanpassingen een classificatie model te bouwen.

Praktische informatie:

  • Wanneer: wekelijks van woensdag 15 maart  t/m woensdag 19 april 2017
  • Tijd: van 13:00 tot 17:00 uur
  • Waar: The Analytics Lab, Atoomweg 50, 3542 AB Utrecht
  • Inschrijven vóór: woensdag 1 maart 2017
  • Kosten: 1.950 euro per persoon (voor zes modules)
  • Minder modules nodig: neem contact met ons op




Happy New Year

Fireworks (in R)

New Year – a new chapter, new verse, or just the same old story ? Ultimately we write it. The choice is ours. ― Alex Morritt

The Analytics Lab and Cmotions wish everybody a happy year. A year full of challenges, new experiences and new knowledge.

Happy New Year

Read more


Christmas Tree with ggplot


rm(list = ls())

# create data
x <- c(8,7,6,7,6,5,6,5,4,5,4,3,4,3,2,3,2,1,0.5,0.1)

dat1 <- data.frame(x1 = 1:length(x), x2 = x)
dat2 <- data.frame(x1 = 1:length(x), x2 = -x)
dat1$xvar <- dat2$xvar <- NA
dat1$yvar <- dat2$yvar <- NA
dat1$siz <- dat2$siz <- NA
dat1$col <- dat2$col <- NA

# set threshold for christmas balls
dec_threshold = -0.5

# create random places, sizes and colors for christmas balls
for (row in 1:nrow(dat1)){

if (rnorm(1) > dec_threshold){

dat1$xvar[row] <- row
dat1$yvar[row] <- sample(1:dat1$x2[row]-1,1)
dat1$siz[row] <- runif(1,0.5,1.5)
dat1$col[row] <- sample(1:5, 1)

if (rnorm(1) > dec_threshold){

dat2$xvar[row] <- row
dat2$yvar[row] <- sample(1:dat2$x2[row],1)
dat2$siz[row] <- runif(1,0.5,1.5)
dat2$col[row] <- sample(1:5, 1)

# plot the christmas tree
ggplot() +
geom_bar(data = dat1, aes(x=x1, y=x2),stat = "identity", fill = '#31a354') +
geom_bar(data = dat2, aes(x=x1, y=x2),stat = "identity", fill = '#31a354') +
geom_point(data = dat1,aes(x = xvar, y = yvar, size = siz, colour = as.factor(col)) ) +
geom_point(data = dat2,aes(x = xvar, y = yvar, size = siz, colour = as.factor(col)) ) +
coord_flip() + theme_minimal()+ theme(legend.position="none",
axis.ticks.y=element_blank()) +
ggtitle('The Analytics Lab wishes you a Merry Christmas')